

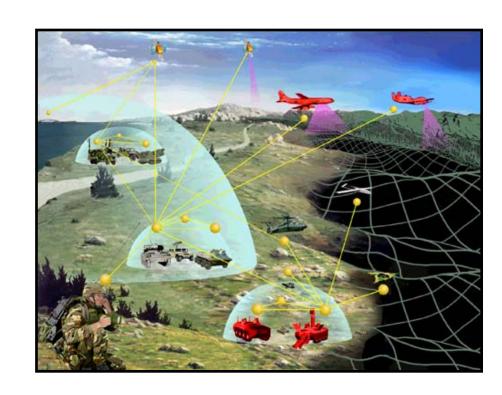
Foundation Initiative 2010

Establishing the Foundation for DoD Range Interoperability
Capability/Business Opportunity Brief

Tony Gillooley

tony_gillooley@stricom.army.mil 407.384.3915

12 June 2003


Vision

- Design and prototype a technological infrastructure to enable interoperability and reuse within the range community.
 - Improve the scope and scale of testing and training.

We need to:

- Satisfy the core operational and performance requirements
- Work with the range community so solutions are implemented
- Lay the groundwork for full lifecycle support.

Consolidation of Four CTEIP Projects into FI 2010

Test & Training Enabling Architecture (TENA)

Common Display, Analysis, & Processing System (CDAPS)

Virtual Test & Training Range (VTTR)

Joint Regional Range Complex (JRRC)

Foundation Initiative

Funding/Scope Background

- Funding Revisions
 - FY98 Mid-year \$109.2M
 - FY99 Mid-year \$ 72.7M
 - FY00 Mid-year \$ 39.8M
 - FY01-present \$ 40.0M
- FY98 funds: Summary of TENA, CDAPS, VTTR & JRRC
- FY99 Scope Re-definition (subsequent to Mid-year)
 - Direction to re-size project to accomplish critical tasks for real-time interoperability (project scoped at ~\$40M)
 - Focus on integration of tools vice development of new tools.
- FY00 De-Scope and Re-definition
 - New baseline established to accomplish critical tasks for real-time interoperability
- FY 04 Last Year of Current Development supported by OSD
- FI 2010 is Transitioning to Sustainment from now through FY 05

Driving Technical Requirements

1. Interoperability

 The characteristic of a suite of independently-developed components, applications, or systems that implies that they can work together, as part of some business process, to achieve the goals defined by a user or users.

2. Reusability

 The characteristic of a given component, application, or system that implies that it can be used in arrangements, configurations, or in system-ofsystems beyond those for which it was originally designed.

3. Composability

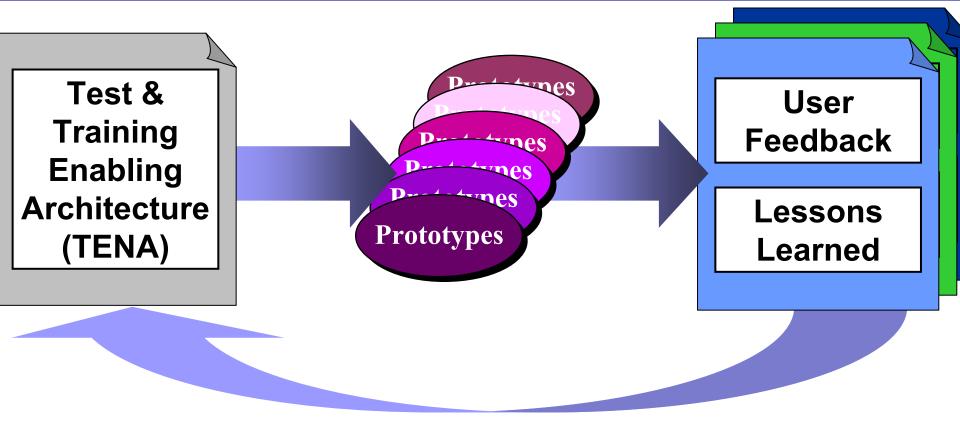
- The ability to rapidly assemble, initialize, test, and execute a system from members of a pool of reusable, interoperable elements.
- Composability can occur at any scale reusable components can be combined to create an application, reusable applications can be combined to create a system, and reusable systems can be combined to create a system-of-systems.

Achieving Interoperability, Reusability, and Composability

Interoperability requires:

- A common architecture TENA
- An ability to meaningfully communicate
 - A common language TENA Object Model (OM)
 - A common communication mechanism → TENA Middleware
 - A physical connection between the ——— Network, shared memory two systems
- A common context

 - A common understanding of time ——— TENA OM, TENA Middlewar
 - A common technical process
 TENA Technical Process


Reusability and Composability require the above, plus

Well defined interfaces and functionality ——— Reusable Tools, for the application to be reused

Overall Development Strategy

- TENA was revised based on user feedback and lessons learned from working software prototypes
- TENA will be revised in the future based on future prototypes

TENA is based on real-world tests at real ranges

TENA Architecture Overview

Ways TENA Can Exchange Data

TENA presents to the range user a unification of several powerful inter-application communication paradigms

Publish/Subscribe

- Similar in effect to HLA, DIS, or other PDU-based communication systems
- Each application publishes certain types of information (the publication state) which can be subscribed to by any other application

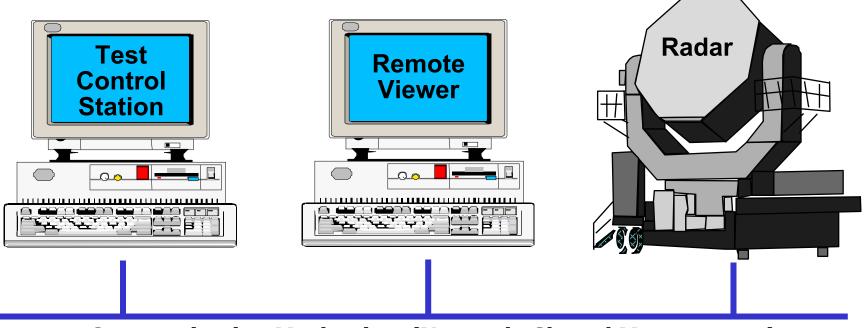
Remote Method Invocation

- Similar to CORBA or Java RMI
- Each object that is published may have methods that can be remotely invoked by other applications

Messages

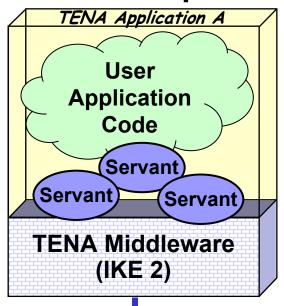
 Individual messages that can be sent from one application to one or more other applications

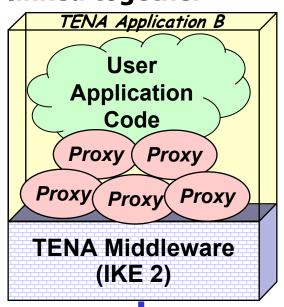
Data Streams

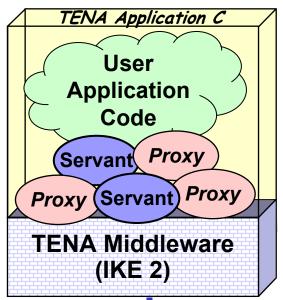

Native support for audio, video, and telemetry

Logical Range Simple Example

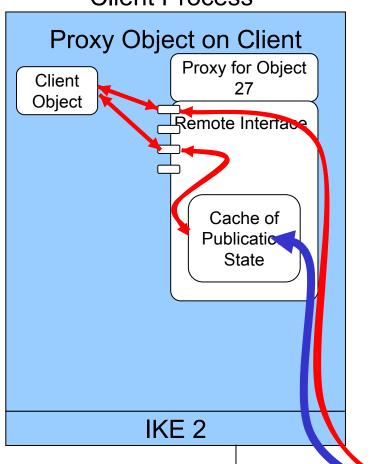
TENA specifies an architecture for range resources participating in logical ranges


Communication Mechanism (Network, Shared Memory, etc.)

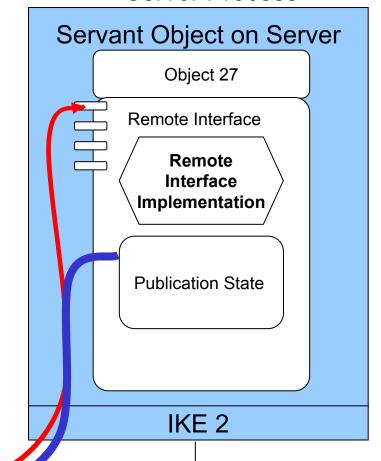



Logical Range Simple Example

- TENA specifies a peer-to-peer architecture for logical ranges
 - Applications can be both clients and servers simultaneously
 - In their role as servers, applications serve TENA objects called "servants"
 - In their role as clients, applications obtain "proxies," representing other applications' servants. Only servers can write to their servant objects' publication state
- The IKE 2 Middleware, the TENA objects, and the user's application code are compiled and linked together

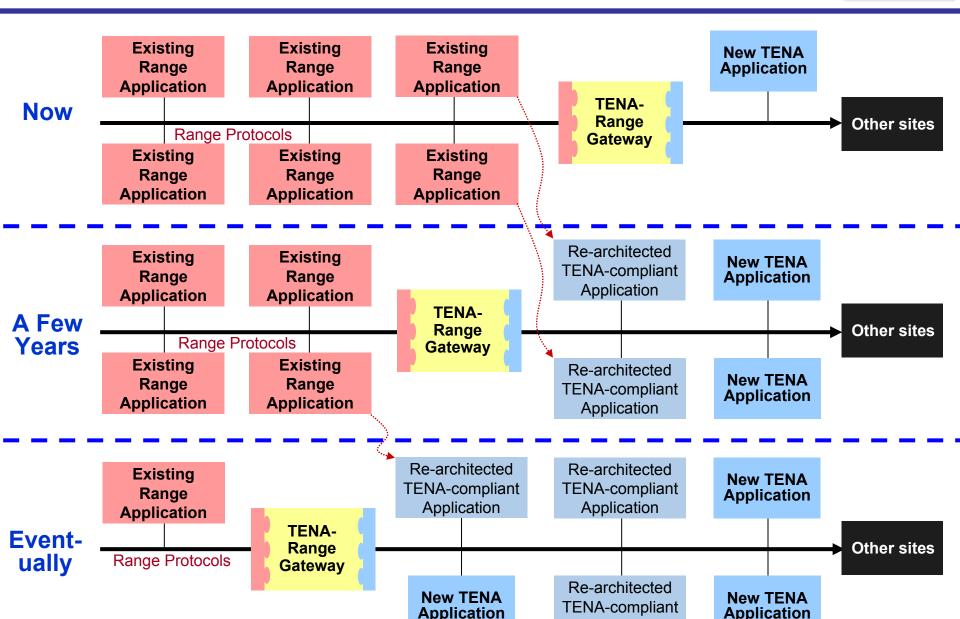

Communication Mechanism (Network, Shared Memory, etc.)

Clients and Proxies; Servers and Servants



- When objects are distributed across multiple processes or machines
 - One object is the "real" object the one with the implementation
 - All the others are "proxies"Client Process

Notwork


Server Process

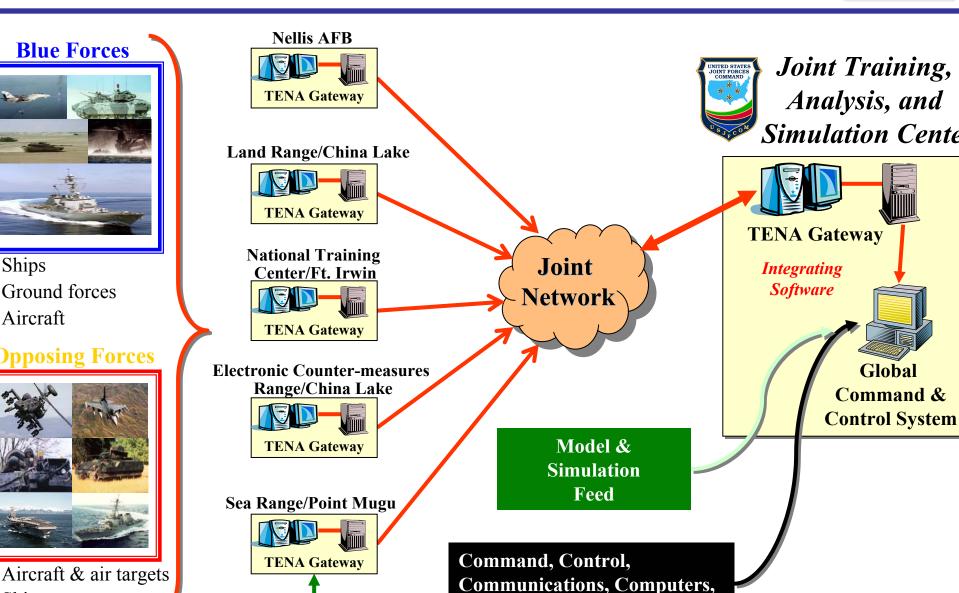
Gradual Deployment of TENA

TENA Middleware Platform/Language Support

Computer Platform Support

- Windows NT 4.0 / 2000 / XP with MSVC++ 6.0sp5
- Windows NT 4.0 / 2000 / XP with MSVC++ 7.0
- Linux Red Hat 7.1 with gcc 3.0.3
- Sun Solaris 8 (SunOS 5.8) with gcc 3.0.3
- Sun Solaris 8 with SunPro 5.4 compiler
- SGI IRIX 6.5.12 with gcc 3.0.3 on SGI hardware
- VxWorks 5.5, Motorola MPC7XXX PowerPC, Tornado 2.2 with gcc 3.0.3

Programming Language Support

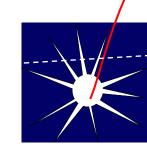

- C++
- OCX (COM) wrapper (developed by a TENA user)
- Java

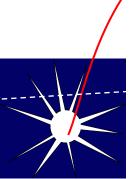
Ships

Range Integration in Millennium Challenge 2002 (MC02)

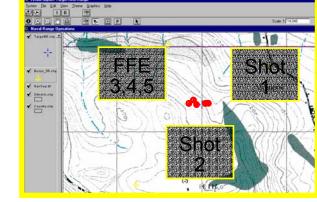
Intelligence Feed

US Marines/So. California



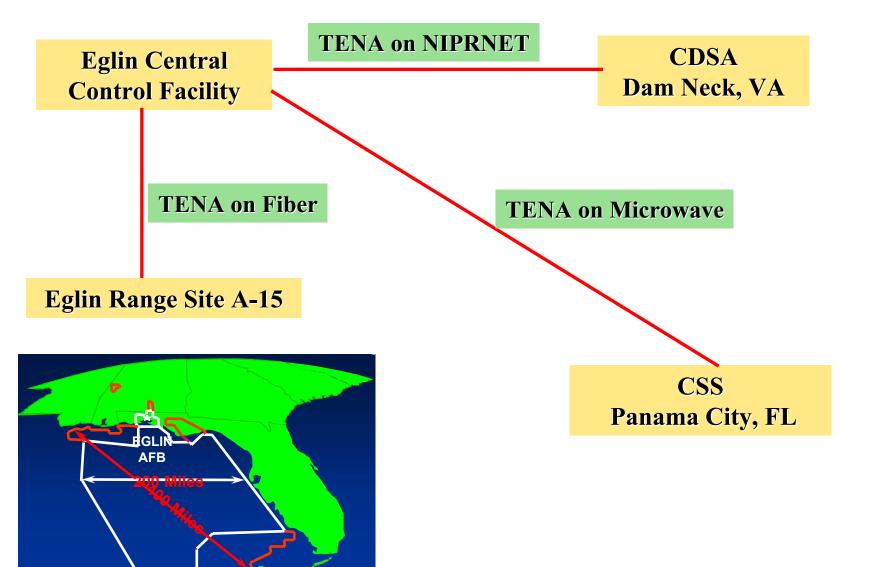

Guil Range virtual at Sea Training (VAST)/Integrated Maritime Acoustic Scoring and Simulation (IMPASS) Demo

Repeater



Completed 11/02

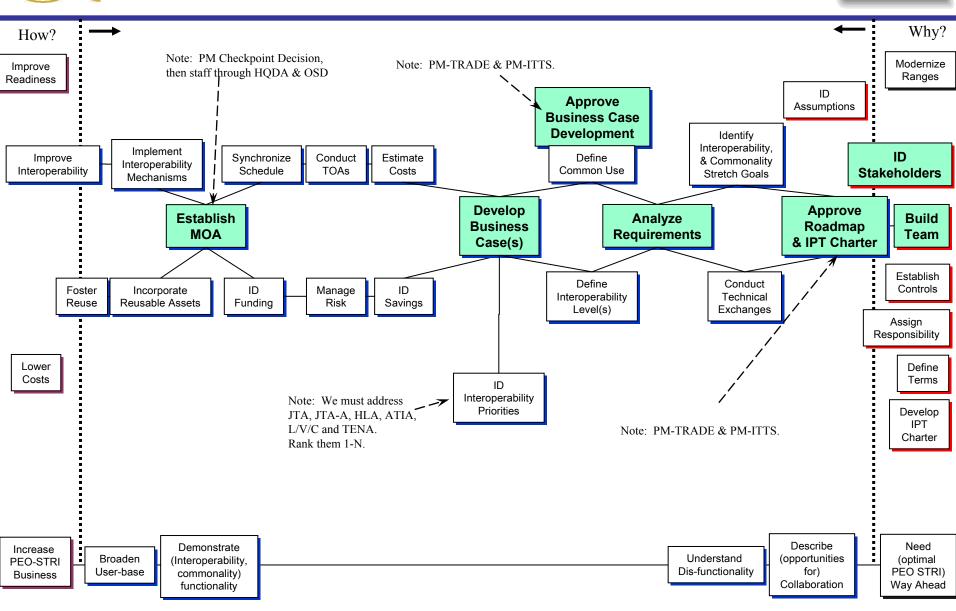
Shipboard Processing Map Rendering Virtual Target



Acoustic Processing GPS Communication Link

VAST/IMPASS Network Connectivity

PEO STRI Use of TENA


- VISION Versatile Information System, Integrated, On-line
- ORTCA Objective Real-time Casualty Assessment and Instrumentation Suite
- EXCIS Extensible Software for Test and Evaluation
- DVSD Digital Video Systems Development
- NGATS Next Generation Army Target System
- CTIA Common Training Instrumentation Architecture

The PEO STRI has directed all PEO STRI systems to be TENA compatible where it makes sense

CTIA/TENA Collaboration Function Model

Anticipated DoD Use of TENA

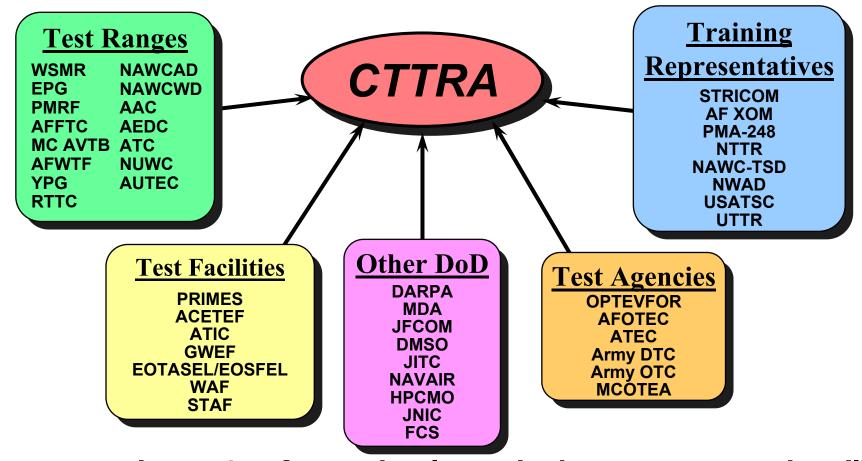
- Joint National Training Capability
- Future Combat Systems System of Systems Integration Laboratory
- Joint Digitized Engineering Plant in need of an architecture

Gov't Provided TENA Products/Services

- TENA Middleware Version 4 being released this month
- TENA 2002 Architecture Reference Document
- TENA Middleware Programmer's Guide & Installation Guide
- TENA Definition Language (TDL) Document
- Services of the Government Furnished Web-Based TDL complier for auto code generation
- Middleware Technical Introduction Course for bidders
- Middleware hands-on training for contactor(s) selected
- Web-Based Help Desk available for use during implementation

Architecture Management Team (TENA AMT)

System Engineers & Technical Leads for the <u>current</u> major stakeholders of TENA


- AAC, Eglin AFB FL
- NUWC, Newport RI
- NAWC-AD, Pax River MD
- WSMR, White Sands NM
- RTTC, Huntsville AL
- EPG, Fort Huachuca AZ
- NAWC-WD, China Lake & Point Mugu CA
- Virtual Proving Ground (VPG)
- Common Training Instrumentation Architecture (CTIA)
- PMRF Synthetic Range
- National Unmanned Underwater Vehicle T&E Center (NUTEC)
- Design Decisions / Trade-offs / Status
- TENA Use Cases / Prototype Test Strategies
- Technical Exchanges of Lessons Learned
- Issues & Concerns Identification, Investigation, & Resolution

Meetings every 4-6 weeks

Common Test & Training Range Architecture (CTTRA)

Systems engineers & software developers in the DoD Range and Facility community (both T&E and Training)

14 three-day workshops held (usually every 6-9 months)

CTTRA XV workshop being planned for July or August 2003

Training Courses Available

TENA Technical Overview Course (TOC) – 26 June @ 0800 in de Florez 2040

- Designed for the non-programmer
- Provides basic familiarization on TENA and Logical Ranges
- Typically 1 day in length (half day & two hour versions are available)
- Lecture format

TENA Technical Introduction Course (TIC)

- Designed for the programmer
- Introduces design concepts to build TENA-compliant applications
- Typically 1 day in length
- Lecture format

Hands-on Training (HOT)

- Designed for the programmer
- Provides several examples & class exercises to learn the TENA Middleware API
- Typically 1 week in length
- Computer classroom format

Acquisition Way-Ahead

TENA Middleware Business Opportunities

 Longer term contracted sustainment support being developed for late FY04 award

TENA Middleware Capabilities - Potential Features Release 5

- Requirements being formalized for FY04 enhancements task may be executed on existing contract
 - Data Streams (video, telemetry, etc.)
 - Fault Tolerance
 - Refine the TENA Application Program Interface (API)
 - Immediate Stateful Distributed Object (SDO) Discovery
 - Vectors of SDOs
 - SDO Update Atomicity
 - Configuration Support
 - Call Back Interface
 - Subscription Filtering
 - One-way Methods

Summary

An <u>Architecture</u> for Ranges, Facilities, and Simulations to Interoperate, to be Reused, to be Composed into greater capabilities

- A Working Implementation of the Architecture
 - TENA Middleware currently works on Windows, Linux, and Sun
- A Process to Develop and Expand the Architecture
 - CTTRA Workshops, AMT Meetings, and RCC Coordination
- A Technical Strategy to Deploy the Architecture
 - Gateways provide interim solutions as TENA interfaces
- Technical Questions on MC02 and VAST/IMPASS Demos
 - Contact Jerry Santos, <u>gsantos@scisol.com</u>
- Website Access to TENA Documentation
 - Contact Stephanie Clewer, <u>stephanie.clewer@baesystems.com</u>
- TENA Middleware contract will be let this year
 - Contact tony gillooley@peostri.army.mil for contract/programmatic questions